Attention-based Model Hung-yi Lee

Attention

- Reasoning, memory
- Human's memory
- Working memeoyA

Attention on Sensory Information

- Sequence to sequence learning: Both input and output are both sequences with different lengths.
- E.g. 機器學習→machine learning

Attention-based model

- Cosine similarity of z and h
- Small NN whose input is z and h, output a scalar

$$\triangleright \alpha = h^T W z$$

How to learn the parameters?

How to learn the parameters?

Attention-based model

$$c^0 = \sum \hat{\alpha}_0^i h^i$$
$$= 0.5h^1 + 0.5h^2$$

Speech Recognition

William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals, "Listen, Attend and Spell", arXiv'15

Time

• Input an image, but output a sequence of words

Good captions

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

Bad captions

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Ref: A man and a woman ride a motorcycle A man and a woman are talking on the road

Ref: A woman is frying food **Someone** is **frying** a **fish** in a **pot**

Memory Network

Performance of Hopping

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.	-	0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow Prediction: yellow				

Demo video: https://www.facebook.com/Engineering/videos/10153098860532200/

Special Attention: Spatial Transformers

Attention on Memory

Information from the sensors (e.g. eyes, ears) Sensory Memory **Attention** Working Memory Encode Retrieval Long-term Memory

von Neumann architecture

Actually, Neural Turing Machine is an advanced RNN/LSTM.

https://www.quora.com/How-does-the-Von-Neumann-architecture-provide-flexibility-for-program-development

Wei Zhang, Yang Yu, Bowen Zhou, Structured Memory for Neural Turing Machines, arXiv'15

Stack RNN

Armand Joulin, Tomas Mikolov, Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets, 2015

Concluding Remarks

Reference

- End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. arXiv Pre-Print, 2015.
- Neural Turing Machines. Alex Graves, Greg Wayne, Ivo Danihelka. arXiv Pre-Print,
 2014
- Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.
 Kumar et al. arXiv Pre-Print, 2015
- Neural Machine Translation by Jointly Learning to Align and Translate. D. Bahdanau, K. Cho, Y. Bengio; International Conference on Representation Learning 2015.
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Kelvin Xu et. al.. arXiv Pre-Print, 2015.
- Attention-Based Models for Speech Recognition. Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio. arXiv Pre-Print, 2015.
- A Neural Attention Model for Abstractive Sentence Summarization. A. M. Rush,
 S. Chopra and J. Weston. EMNLP 2015.

Plan

- 1/8 (五) 23:59: Presentation team decided
- 1/13 (三) 23:59: Presentation slides deadline
- 1/15 (五)
 - 上課時間: Presentation
 - 返鄉投票
- 1/16 (六): 投票
- 1/20 (三) 23:59: Report deadline

Teaching Machines to Read and Comprehend, Hermann et. al. (2015)