Attention-based Model
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Attention

e Reasoning, memory
* Human’s memory
* Working memeoyA
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Machine Translation

* Sequence to sequence learning: Both input and output are
both sequences with different lengths.

* E.g. 25 B2 Smachine learning

Information of the
whole sentences
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Machine Translation

e Attention-based model
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Machine Translation

e Attention-based model
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Machine Translation
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Machine Translation

e Attention-based model
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TF i William Chan, Navdeep Jaitly, Quoc V. Le, Oriol Vinyals,
Sp eech Reco_gmtlon “Listen, Attend and Spell”, arXiv’15
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Image Caption Generation

* Input an image, but output a sequence of words

A vector
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Image Caption Generation

A vector for
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Image Caption Generation
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Image Caption Generation
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Image Caption Generation

* Good captions

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
. mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Image Caption Generation

* Bad captions

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.




Ref: A man and a woman ride a motorcycle
A man and a woman are talking on the

Ref: A woman is frying food
Someone is frying a fishina




Reading Comprehension

Sentence to Extracted
vector can be Information
jointly trained.

Document

vector
Please refer to the lecture on 2015/12/04
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Memory Network

* Performance of Hopping

Story (16: basic induction) Support| Hop1 | Hop 2 | Hop 3
Brian is a frog. yes 0.00 0.00
Lily is gray. 0.07 0.00 0.00
Brian is yellow. yes 0.07 0.00 -
Julius is green. 0.06 0.00 0.00
Greg is a frog. yes 0.76 0.02 0.00
What color is Greg? Answer: yellow Prediction: yellow

Demo video: https://www.facebook.com/Engineering/videos/10153098860532200/
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Spatial Transformers

Good
results

Max Jaderberg, Karen
Simonyan, Andrew
Zisserman, Koray
Kavukcuoglu, Spatial
Transformer Networks,
arXiv’15

Bad
results
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Neural Turing Machine

 von Neumann architecture

Actually, Neural
Control Ari:h"‘!etic Turing Machine is an
St Unit advanced RNN/LSTM.

https://www.quora.com/How-does-the-Von-Neumann-architecture-
provide-flexibility-for-program-development
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Neural Turing Machine

(simplified)
at = (1 - Dab + cos(mh, k)




Neural Turing Machine
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Neural Turing Machine

Wei Zhang, Yang

Yu, Bowen Zhou,
Structured Memory for
Neural Turing Machines,
arXiv’15
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Armand Joulin, Tomas Mikolov, Inferring

Sta C k R N N Algorithmic Patterns with Stack-Augmented

Recurrent Nets, 2015

stack ‘ . .‘

0.7 0.2 0.1
Push, Pop, Nothing

Information
to store
Push
Pop -1 -1

Nothing -1




Concluding Remarks
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Teaching Machines to Read and Comprehend, Hermann et. al. (2015)




